Brief information about the project

Name of the project	AP14869180 «Development of effective technologies with
	joint hydrogenation processing of coal and oil shale of the Republic
	of Kazakhstan for the production of motor fuel components and
	chemicals» (0122PK00963)
Relevance	Under present-day conditions and in the future, in connection
	with limited oil reserves (no more than 90 billion tons) and many
	times more significant coal and oil shale reserves across the globe.
	including Kazakhstan Estonia and Russia, the issues of their
	chemical processing are also becoming important today
	Hydrogenation of solid fuels is a universal method of producing
	liquid products which with respect to the organic matter of oil shale
	(OMOS) and coals (OMC) can be performed under low hydrogen
	pressure because of their specific structure. The organic matter of oil
	shale can be used as additives (10-20 %) for coal hydrogenation to
	initiate its destruction as a result of the higher reactivity of OMOS
	This research trend has recently attracted the attention of researchers.
	from Cormony, Dussia, USA, Japan and other countries
	Besides the OMOS contains a substantial emount of hydrogen
	besides, the OWOS contains a substantial amount of hydrogen over 0.0 which determines the low hydrogen consumption as
	- over 9 %, which determines the low hydrogen consumption as
	more favorable aconomic parameters of refining
Durnosa	Droject goal is to develop high performance technology and
Fulpose	scientific and technical solutions for the joint hydrogenetion
	processing of Taldykal coal and Kivin oil shale (in the processing of
	processing of Taldykor coar and Kryni on shale (in the presence of nanobataroganaous nickal sulfide catalysts) and produced coal and
	shale distillates to produce motor fuel constituents and chemicals
Objectives	1 Determine the characteristics of cool from the
Objectives	1. Determine the characteristics of coal from the Taldykal denosit shale from the Kivin denosit and all nexts forming
	agent. To study the chemical composition and properties, the affect
	of technological parameters (temperature pressure ratio of shale to
	coal) with a fixed amount of pasta forming agent on the yield of light
	fractions in the process of hydrogenetion of coal from the Taldykal
	field Investigate the process of preliminary executives and the effect
	of a rediction on the process of hydrogenetion of Taldukal coal
	Study of the formal kinetics and thermodynamics of the process of β
	budrogenetion processing of Taldykal coal
	To determine the effective emount of additives of
	2. To determine the effective amount of additives of shale from the Kivin denosit to each from the Taldyleal denosit for
	shale from the Krylli deposit to coal from the Taldykor deposit for
	process (temperature pressure quantity chemical mechanism of
	action of a nanohotorogonoous nickel sulfide estalyst synthesized in
	situ from aquaqua colutiona procursor) when hydrogeneting a mixture
	situ from aqueous solutions precursor) when hydrogenating a mixture of cool \pm shale with the addition of a sulfiding agent commutal
	of $coal + shale with the addition of a sufficiency agent - elemental sulfur$
	3. To determine the hydrocarbon-type content and
	chemical composition sulfur content of the obtained distillate coal
	and shale fractions with a boiling points up to 180 °C and up to 180-
	360 °C. To study the chemical composition of initial and
	dephenolized light distillates with the use of physicochemical
	methods.

	4. To study the influence of technological parameters of hydrotreatment of coal and shale gasoline and diesel fractions on the
	degree of removal of heteroatomic and unsaturated compounds,
	aromatic hydrocarbons in the presence of industrial catalysts.
	5. To develop Process Flow Scheme for obtaining motor
	il shale from the Kivin field. To identify the main physical and
	chemical and performance properties of obtained motor fuel
	constituents in accordance with the requirements of the operating
	standards currently in force.
Expected and achieved	The effective amounts of additives of the Kiin shale to the coal
results	of the Taldykol deposit for joint hydrogenation in the optimal
	technological parameters of the process (temperature, pressure,
	amount, chemical mechanism of action of a nanoheterogeneous
	nickel sulfide catalyst synthesized in situ from aqueous solutions of
	a precursor) during hydrogenation of a mixture of coal+shale with
	additives of a sulfiding agent – elemental sulfur were determined.
	Based on the results obtained, a conclusion was made about the rather
	high activity of nickel sulfide catalysts in the process of hydrogenetics of cool from the Taldykal deposit Modification of
	inverse with additives of elemental sulfur (0.75, 1.25%) allows to
	increase the yield of liquid products up to 79.0-88.6% compared to
	the implementation of the process in the presence of unmodified
	catalysts.
	The group hydrocarbon and chemical composition, the sulfur
	content of the obtained distillate coal shale fractions with temperature
	up to 180°C and 180-360°C were determined. The chemical
	composition of the initial and phenol-free light distillates was
	investigated by physical and chemical methods. According to the
	results of the study, the addition of oil shale to coal allows to carry
	out under optimal conditions the process of hydrogenolysis of the
	distillate products without coke formation. The degree of
	transformation of the mixture of the organic mass of shale and coal
	is much higher than of coal
	The influence of technological parameters of hydrotreatment
	of coal and shale gasoline and diesel fractions on the degree of
	removal of heteroatomic and unsaturated compounds, aromatic
	hydrocarbons in the presence of industrial catalysts will be studied. Process Flow Scheme for obtaining motor fuel constituents
	using the joint hydrogenation of Taldykol coal and oil shale from the
	Kiyin field will be developed. The main physico-chemical and
	performance properties of the obtained components of motor fuels
	with boiling point of 180-360 °C will be determined in accordance
	with the requirements of GOST R 52368-2005 and the EU standard EN 590-2004 and initial data will be provided for the development of
	technological regulations of a demonstration plant for the obtaining
	of motor fuel components from coal distillates using hydrogenation
	processes.
Kesearch team	1. Kairbekov Zhaksyntay, Doctor of Chemical Sciences,
identifiers (Second	Frolessor. Scopus Author ID 55910/05200. Researcher ID Web of
identifiers (Scopus	SUCHUE. <u>A-3307-2013.</u> UKUID: <u>0000-0002-0233-2330.</u>

Author ID, Researcher	2. Sarmurzina Raushan Gaisievna, Doctor of Chemical
ID, ORCID, if	Sciences, Professor, Academician of KazNAEN, Honorary
available) and links to	Academician of the National Academy of Sciences of the Republic
relevant profiles	of Kazakhstan. Scopus author ID: 6603381995. ORCID 0000-0002-
-	9572-9712
	3. Esenalieva Manshuk Zinullaevna, candidate of Chemical
	Sciences, Associate Professor. Scopus author ID: 6507284187.
	ORCID: 0000-0002-0817-2048
	4. Dzheldybaeva Indira Mukhametkerimovna, PhD. Scopus
	Author ID: 56600659100. Researcher ID Web of Science: CPH-
	4244-2022. ORCID: <u>0000-0002-1524-4046.</u>
	5. Suimbaeva Saltanat Malikovna, PhD. Scopus author ID:
	57201691853. Researcher ID Web of Science: EBK-0532-2022.
	ORCID ID: 0000-0003-3990-4974.
	6. Abil'mazhinova Didar Zamanbekovna PhD-doctoral
	student. Scopus author ID: 58021595400. ORCID: 0000-0001-7362-
	4963
	7. Kazi Marlen Rustambekovich, Bachelor's degree.
	ORCID: 0009-0006-8523-6101
List of publications	1. Kairbekov Zh.K., Dzheldybaeva I.M., Kairbekov A.Zh.,
with links to them	Suimbaeva S.M., Moldabaev A. Application of preliminary
	ozonolysis and gamma radiation to increase the reactivity of coal
	from the Taldykol deposit during hydrogenation // Proceedings of
	the VIII International Russian-Kazakh scientific and practical
	conference "Chemical technologies of functional materials",
	Almaty, $2022 P. 211-213$ (in Russ).
	2. Kairbekov Zh., Suimbaeva S.M., Ermoldina E.I.,
	Dzheldybaeva I.M. The effect of ozonolysis on the depth of catalytic
	nydrogenation of coal from the Taldykol deposit. Russian-Kazakh
	Symposium Coal Chemistry and Ecology of Kuzbass 2022, Komerovo Pussia P 20 (in Puss)
	2 7h Kairbakov IM Dzhaldubavova SM Suimbavova
	A Zh. Kairbekov, The influence of preliminary ozonation and
	A.Z.I. Kandekov. The influence of premininary ozonation and γ^{-}
	deposit // Materials of the International Scientific Conference
	"Promising directions for the development of chemical science
	technology and ecology" dedicated to the 75th anniversary of the
	A B Bekturov Institute of Chemical Sciences and the 120th
	anniversary of Academician of the Academy of Sciences of the
	Kazakh SSR A B Bekturov Almaty 2022 - P 94-96 (in Russ)
	4 Kairbekov Zh K Esenalieva M Z Suimbaeva S M
	Dzheldybaeva I.M. Kairbekov A.Zh. Joint hydrogenation of
	Taldykol coal and Kiinsky shale // Proceedings of the IX
	International Russian-Kazakh scientific and practical conference
	Novosibirsk, 25-27 May, 2023 P.53-55. (in Russ).
	5. Kairbekov Zh., Sarmurzina R.G., Esenalieva M.Z.
	Kairbekov A.Zh., Suimbaeva S.M., Dzheldvbaeva I.M. Obtaining
	fuel products by combined hydrogenation of coal and shale. //
	Kazakhstan journal for oil & gas industry 2023. – No5. – P.83-91.
	(in Eng). DOI: <u>https://doi.org/10.54859/kjogi108656</u>
Patents	-